Problem-Parameter-Free Decentralized Nonconvex Stochastic Optimization

Existing decentralized algorithms usually require knowledge of problem parameters for updating local iterates. For example, the hyperparameters (such as learning rate) usually require the knowledge of Lipschitz constant of the global gradient or topological information of the communication networks, which are usually not accessible in practice. In this paper, we propose D-NASA, the first algorithm … Read more

Riemannian Bilevel Optimization

In this work, we consider the bilevel optimization problem on Riemannian manifolds. We inspect the calculation of the hypergradient of such problems on general manifolds and thus enable the utilization of gradient-based algorithms to solve such problems. The calculation of the hypergradient requires utilizing the notion of Riemannian cross-derivative and we inspect the properties and … Read more

Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms

We present Zeroth-order Riemannian Averaging Stochastic Approximation (\texttt{Zo-RASA}) algorithms for stochastic optimization on Riemannian manifolds. We show that \texttt{Zo-RASA} achieves optimal sample complexities for generating $\epsilon$-approximation first-order stationary solutions using only one-sample or constant-order batches in each iteration. Our approach employs Riemannian moving-average stochastic gradient estimators, and a novel Riemannian-Lyapunov analysis technique for convergence analysis. … Read more

A Riemannian ADMM

We consider a class of Riemannian optimization problems where the objective is the sum of a smooth function and a nonsmooth function, considered in the ambient space. This class of problems finds important applications in machine learning and statistics such as the sparse principal component analysis, sparse spectral clustering, and orthogonal dictionary learning. We propose … Read more

Federated Learning on Riemannian Manifolds

Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated … Read more

Stochastic Zeroth-order Riemannian Derivative Estimation and Optimization

We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problem with only noisy objective function evaluations. Towards this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian … Read more