A Robust Implementation of a Sequential Quadratic Programming Algorithm with Successive Error Restoration

We consider sequential quadratic programming (SQP) methods for solving constrained nonlinear programming problems. It is generally believed that SQP methods are sensitive to the accuracy by which partial derivatives are provided. One reason is that differences of gradients of the Lagrangian function are used for updating a quasi-Newton matrix, e.g., by the BFGS formula. The … Read more

A Collection of 1,300 Dynamical Systems for Testing Data Fitting, Optimal Control, Experimental Design, Identification, Simulation or Similar Software – User’s Guide

We describe a collection of test problems which have been used to develop and test data fitting software for identifying parameters in explicit model functions, dynamical systems of equations, Laplace transformations, systems of ordinary differential equations, differential algebraic equations, or systems of one-dimensional time-dependent partial differential equations with or without algebraic equations. The test cases … Read more

An Updated Set of 306 Test Problems for Nonlinear Programming with Validated Optimal Solutions

The availability of nonlinear programming test problems is extremely important to test optimization codes or to develop new algorithms. We describe the usage of the Fortran subroutines for all 306 test problems of two previous collections of the author, see Hock and Schittkowski (1981) and Schittkowski (1987). For each test example, we provide an optimal … Read more

Data Fitting and Experimental Design in Dynamical Systems with EASY-FIT ModelDesign

EASY-FIT is an interactive software system to identify parameters and compute optimal designs in explicit model functions, steady-state systems, Laplace transformations, systems of ordinary differential equations, differential algebraic equations, or systems of one-dimensional time dependent partial differential equations with or without algebraic equations. Proceeding from given experimental data, i.e. observation times and measurements, the minimum … Read more

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints

We propose a numerical algorithm for solving smooth nonlinear programming problems with a large number of constraints, but a moderate number of variables. The active set method proceeds from a given bound mw for the maximum number of expected violated constraints, where mw is a user-provided parameter less than the total number of constraints. A … Read more

NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more