A Robust Implementation of a Sequential Quadratic Programming Algorithm with Successive Error Restoration
We consider sequential quadratic programming (SQP) methods for solving constrained nonlinear programming problems. It is generally believed that SQP methods are sensitive to the accuracy by which partial derivatives are provided. One reason is that differences of gradients of the Lagrangian function are used for updating a quasi-Newton matrix, e.g., by the BFGS formula. The … Read more