Curvature-oriented variance reduction methods for nonconvex stochastic optimization
When pursuing an approximate second-order stationary point in nonconvex constrained stochastic optimization, is it possible to design a stochastic second-order method that achieves the same sample complexity order as in the unconstrained setting? To address this question in this paper, we first introduce Carme, a curvature-oriented variance reduction method designed for unconstrained nonconvex stochastic optimization. … Read more