Solving mixed integer nonlinear programming problems for mine production planning with stockpiling

The open-pit mine production scheduling problem has received a great deal of attention in recent years, both in the academic literature, and in the mining industry. Optimization approaches to strategic planning for mine exploitation have become the industry standard. However most of these approaches focus on extraction sequencing, and don’t consider the material flow after … Read more

A new LP algorithm for precedence constrained production scheduling

We present a number of new algorithmic ideas for solving LP relaxations of extremely large precedence constrained production scheduling problems. These ideas are used to develop an implementation that is tested on a variety of real-life, large scale instances; yielding optimal solutions in very practicable CPU time. CitationUnpublished. Columbia University, BHP Billiton, August 2009.ArticleDownload View … Read more

Approximate fixed-rank closures of set covering problems

We show that for any fixed rank, the closure of a set covering problem (and related problems) can be approximated in polynomial time — we can epsilon-approximate any linear program over the closure in polynomial time. CitationCORC report TR-2003-01, Computational Optimization Research Center, Columbia UniversityArticleDownload View PDF