A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part II: General Algorithm

An algorithm is proposed for finding the finest simultaneous block-diagonalization of a finite number of square matrices, or equivalently the irreducible decomposition of a matrix *-algebra given in terms of its generators. This extends the approach initiated in Part I by Murota-Kanno-Kojima-Kojima. The algorithm, composed of numerical-linear algebraic computations, does not require any algebraic structure … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part I: Proposed Approach and Application to Semidefinite Programming

Motivated by recent interest in group-symmetry in semidefinite programming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a finite number of matrices, or equivalently the irreducible decomposition of the generated matrix *-algebra. The method is composed of numerical-linear algebraic computations such as eigenvalue computation, and automatically makes full use of the … Read more

Exploiting Sparsity in Semidefinite Programming via Matrix Completion II: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied … Read more