Two limited-memory optimization methods with minimum violation of the previous quasi-Newton equations

Limited-memory variable metric methods based on the well-known BFGS update are widely used for large scale optimization. The block version of the BFGS update, derived by Schnabel (1983), Hu and Storey (1991) and Vl·cek and Luk·san (2019), satis¯es the quasi-Newton equations with all used di®erence vectors and for quadratic objective functions gives the best improvement … Read more

A limited-memory optimization method using the infinitely many times repeated BNS update and conjugate directions

To improve the performance of the limited-memory variable metric L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed in [1, 2]. But the suitable extra updates need to be selected carefully, since the repeating process can be time consuming. We show that for the limited-memory variable metric BNS method, matrix … Read more

Properties of the block BFGS update and its application to the limited-memory block BNS method for unconstrained minimization.

A block version of the BFGS variable metric update formula and its modifications are investigated. In spite of the fact that this formula satisfies the quasi-Newton conditions with all used difference vectors and that the improvement of convergence is the best one in some sense for quadratic objective functions, for general functions it does not … Read more

A modified limited-memory BNS method for unconstrained minimization based on the conjugate directions idea

A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization is proposed, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors for better satisfaction of previous quasi-Newton conditions. In comparison with [16], where a similar approach is used, correction vectors from more previous iterations … Read more

A conjugate directions approach to improve the limited-memory BFGS method

Simple modifiations of the limited-memory BFGS method (L-BFGS) for large scale unconstrained optimization are considered, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors, utilizing information from the preceding iteration. In case of quadratic objective functions, the improvement of convergence is the best one in some sense and … Read more

Generalizations of the limited-memory BFGS method based on quasi-product form of update

Two families of limited-memory variable metric or quasi-Newton methods for unconstrained minimization based on quasi-product form of update are derived. As for the first family, four variants how to utilize the Strang recurrences for the Broyden class of variable metric updates are investigated; three of them use the same number of stored vectors as the … Read more

Transformations enabling to construct limited-memory Broyden class methods

The Broyden class of quasi-Newton updates for inverse Hessian approximation are transformed to the formal BFGS update, which makes possible to generalize the well-known Nocedal method based on the Strang recurrences to the scaled limited-memory Broyden family, using the same number of stored vectors as for the limited-memory BFGS method. Two variants are given, the … Read more

Limited-memory projective variable metric methods for unconstrained minimization

A new family of limited-memory variable metric or quasi-Newton methods for unconstrained minimization is given. The methods are based on a positive definite inverse Hessian approximation in the form of the sum of identity matrix and two low rank matrices, obtained by the standard scaled Broyden class update. To reduce the rank of matrices, various … Read more

Additional properties of shifted valiable metric methods.

Some supplements to shifted variable metric or quasi-Newton methods for unconstrained minimization are given, including new limited-memory methods. Global convergence of these methods can be established for convex sufficiently smooth functions. Some encouraging numerical experience is reported. Citation Report No. V899-03, Institute of Computer Scienc, Czech Academy of Sciences, Prague, December 2003 (revised May 2004). … Read more

Exploiting Sparsity in Semidefinite Programming via Matrix Completion II: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied … Read more