A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part II: General Algorithm

An algorithm is proposed for finding the finest simultaneous block-diagonalization of a finite number of square matrices, or equivalently the irreducible decomposition of a matrix *-algebra given in terms of its generators. This extends the approach initiated in Part I by Murota-Kanno-Kojima-Kojima. The algorithm, composed of numerical-linear algebraic computations, does not require any algebraic structure … Read more

Efficient high-precision dense matrix algebra on parallel architectures for nonlinear discrete optimization

We provide a proof point for the idea that matrix-based algorithms for discrete optimization problems, mainly conceived for proving theoretical efficiency, can be easily and efficiently implemented on massively-parallel architectures by exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision dense linear algebra. We have successfully implemented our algorithm on the Blue Gene/L … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part I: Proposed Approach and Application to Semidefinite Programming

Motivated by recent interest in group-symmetry in semidefinite programming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a finite number of matrices, or equivalently the irreducible decomposition of the generated matrix *-algebra. The method is composed of numerical-linear algebraic computations such as eigenvalue computation, and automatically makes full use of the … Read more