What is the optimal cutoff surface for ore bodies with more than one mineral?

In mine planning problems, cutoff grade optimization defines a threshold at every time period such that material above this value is processed, and the rest is considered waste. In orebodies with multiple minerals, which occur in practice, the natural extension is to consider a cutoff surface. We show that in two dimensions the optimal solution … Read more

Risk-Averse Multistage Stochastic Programs with Expected Conditional Risk Measures

We study decomposition algorithms for risk-averse multistage stochastic programs with expected conditional risk measures (ECRMs). ECRMs are attractive because they are time-consistent, which means that a plan made today will not be changed in the future if the problem is re-solved given a realization of the random variables. We show that solving risk-averse problems based … Read more

An algorithm for binary chance-constrained problems using IIS

We propose an algorithm based on infeasible irreducible subsystems (IIS) to solve general binary chance-constrained problems. By leverag- ing on the problem structure we are able to generate good quality upper bounds to the optimal value early in the algorithm, and the discrete do- main is used to guide us eciently in the search of … Read more

Fenchel Decomposition for Stochastic Mixed-Integer Programming

This paper introduces a new cutting plane method for two-stage stochastic mixed-integer programming (SMIP) called Fenchel decomposition (FD). FD uses a class of valid inequalities termed, FD cuts, which are derived based on Fenchel cutting planes from integer programming. First, we derive FD cuts based on both the first and second-stage variables, and devise an … Read more

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse

This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem. A new class of valid inequalities for mixed 0-1 SIP with random recourse … Read more

On Adaptive Multicut Aggregation for Two-Stage Stochastic Linear Programs with Recourse

Outer linearization methods for two-stage stochastic linear programs with recourse, such as the L-shaped algorithm,generally apply a single optimality cut on the nonlinear objective at each major iteration, while the multicut version of the algorithm allows for several cuts to be placed at once. In general, the L-shaped algorithm tends to have more major iterations … Read more

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed Integer Programs

Two-stage stochastic mixed-integer programming (SMIP) problems with recourse are generally difficult to solve. This paper presents a first computational study of a disjunctive cutting plane method for stochastic mixed 0-1 programs that uses lift-and-project cuts based on the extensive form of the two-stage SMIP problem. An extension of the method based on where the data … Read more

Inverse Stochastic Linear Programming

Inverse optimization perturbs objective function to make an initial feasible solution optimal with respect to perturbed objective function while minimizing cost of perturbation. We extend inverse optimization to two-stage stochastic linear programs. Since the resulting model grows with number of scenarios, we present two decomposition approaches for solving these problems. CitationUnpublished: 07-1, University of Pittsburgh, … Read more