A Nonmonotone Approach without Differentiability Test for Gradient Sampling Methods

Recently, optimization problems involving nonsmooth and locally Lipschitz functions have been subject of investigation, and an innovative method known as Gradient Sampling has gained attention. Although the method has shown good results for important real problems, some drawbacks still remain unexplored. This study suggests modifications to the gradient sampling class of methods in order to … Read more

Algebraic rules for quadratic regularization of Newton’s method

In this work we propose a class of quasi-Newton methods to minimize a twice differentiable function with Lipschitz continuous Hessian. These methods are based on the quadratic regularization of Newton’s method, with algebraic explicit rules for computing the regularizing parameter. The convergence properties of this class of methods are analysed. We show that if the … Read more

Theoretical aspects of adopting exact penalty elements within sequential methods for nonlinear programming

In the context of sequential methods for solving general nonlinear programming problems, it is usual to work with augmented subproblems instead of the original ones, tackled by the $\ell_1$-penalty function together with the shortcut usage of a convenient penalty parameter. This paper addresses the theoretical reasoning behind handling the original subproblems by such an augmentation … Read more

An inexact and nonmonotone proximal method for smooth unconstrained minimization

An implementable proximal point algorithm is established for the smooth nonconvex unconstrained minimization problem. At each iteration, the algorithm minimizes approximately a general quadratic by a truncated strategy with step length control. The main contributions are: (i) a framework for updating the proximal parameter; (ii) inexact criteria for approximately solving the subproblems; (iii) a nonmonotone … Read more