Global convergence of Riemannian line search methods with a Zhang-Hager-type condition

In this paper, we analyze the global convergence of a general non–monotone line search method on Riemannian manifolds. For this end, we introduce some properties for the tangent search directions that guarantee the convergence, to a stationary point, of this family of optimization methods under appropriate assumptions. A modified version of the non–monotone line search … Read more

New subspace minimization conjugate gradient methods based on regularization model for unconstrained optimization

In this paper, two new subspace minimization conjugate gradient methods based on p-regularization models are proposed, where a special scaled norm in p-regularization model is analyzed. Diffierent choices for special scaled norm lead to different solutions to the p-regularized subproblem. Based on the analyses of the solutions in a two-dimensional subspace, we derive new directions … Read more

Nonmonotone line searches for unconstrained multiobjective optimization problems

In the last two decades, many descent methods for multiobjective optimization problems were proposed. In particular, the steepest descent and the Newton methods were studied for the unconstrained case. In both methods, the search directions are computed by solving convex subproblems, and the stepsizes are obtained by an Armijo-type line search. As a consequence, the … Read more

A Nonmonotone Approach without Differentiability Test for Gradient Sampling Methods

Recently, optimization problems involving nonsmooth and locally Lipschitz functions have been subject of investigation, and an innovative method known as Gradient Sampling has gained attention. Although the method has shown good results for important real problems, some drawbacks still remain unexplored. This study suggests modifications to the gradient sampling class of methods in order to … Read more

Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more

Nonmonotone line search methods with variable sample size

Nonmonotone line search methods for unconstrained minimization with the objective functions in the form of mathematical expectation are considered. The objective function is approximated by the sample average approximation (SAA) with a large sample of fixed size. The nonmonotone line search framework is embedded with a variable sample size strategy such that different sample size … Read more

An Efficient Augmented Lagrangian Method with Applications to Total Variation Minimization

Based on the classic augmented Lagrangian multiplier method, we propose, analyze and test an algorithm for solving a class of equality-constrained non-smooth optimization problems (chiefly but not necessarily convex programs) with a particular structure. The algorithm effectively combines an alternating direction technique with a nonmonotone line search to minimize the augmented Lagrangian function at each … Read more