An Interior-Point Algorithm for Continuous Nonlinearly Constrained Optimization with Noisy Function and Derivative Evaluations

An algorithm based on the interior-point methodology for solving continuous nonlinearly constrained optimization problems is proposed, analyzed, and tested. The distinguishing feature of the algorithm is that it presumes that only noisy values of the objective and constraint functions and their first-order derivatives are available. The algorithm is based on a combination of a previously … Read more

Exploiting Prior Function Evaluations in Derivative-Free Optimization

A derivative-free optimization (DFO) algorithm is presented. The distinguishing feature of the algorithm is that it allows for the use of function values that have been made available through prior runs of a DFO algorithm for solving prior related optimization problems. Applications in which sequences of related optimization problems are solved such that the proposed … Read more