Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing

We present a new recovery analysis for a standard compressed sensing algorithm, Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2008), which considers the fixed points of the algorithm. In the context of arbitrary measurement matrices, we derive a sufficient condition for convergence of IHT to a fixed point and a necessary condition for the existence … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

Phase Transitions for Greedy Sparse Approximation Algorithms

A major enterprise in compressed sensing and sparse approximation is the design and analysis of computationally tractable algorithms for recovering sparse, exact or approximate, solutions of underdetermined linear systems of equations. Many such algorithms have now been proven using the ubiquitous Restricted Isometry Property (RIP) [9] to have optimal-order uniform recovery guarantees. However, it is … Read more