Modeling uncertainty processes for multi-stage optimization of strategic energy planning: An auto-regressive and Markov chain formulation

This paper deals with the modeling of stochastic processes in long-term multistage energy planning problems when little information is available on the degree of uncertainty of such processes. Starting from simple estimates of variation intervals for uncertain parameters, such as energy demands and costs, we model the temporal correlation of these parameters through autoregressive (AR) … Read more

Effective Scenarios in Multistage Distributionally Robust Optimization with a Focus on Total Variation Distance

We study multistage distributionally robust optimization (DRO) to hedge against ambiguity in quantifying the underlying uncertainty of a problem. Recognizing that not all the realizations and scenario paths might have an “effect” on the optimal value, we investigate the question of how to define and identify critical scenarios for nested multistage DRO problems. Our analysis … Read more

Application-Driven Learning via Joint Prediction and Optimization of Demand and Reserves Requirement

Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In power systems, operators first forecast loads trying to minimize errors with respect to historical data. They also size reserve requirements based on error estimates. Next, energy and reserves are scheduled and the system is operated following the … Read more

A Novel Solution Methodology for Wasserstein-based Data-Driven Distributionally Robust Problems

Distributionally robust optimization (DRO) is a mathematical framework to incorporate ambiguity over the actual data-generating probability distribution. Data-driven DRO problems based on the Wasserstein distance are of particular interest for their sound mathematical properties. For right-hand-sided uncertainty, however, existing methods rely on dual vertex enumeration rendering the problem intractable in practical applications. In this context, … Read more

A Framework for Adaptive Open-pit Mining Planning under Geological Uncertainty

Mine planning optimization aims at maximizing the profit obtained from extracting valuable ore. Beyond its theoretical complexity (the open-pit mining problem with capacity constraints reduces to a knapsack problem with precedence constraints, which is NP-hard), practical instances of the problem usually involve a large to very large number of decision variables, typically of the order … Read more

A Data-Driven Approach for a Class of Stochastic Dynamic Optimization Problems

Dynamic stochastic optimization models provide a powerful tool to represent sequential decision-making processes. Typically, these models use statistical predictive methods to capture the structure of the underlying stochastic process without taking into consideration estimation errors and model misspecification. In this context, we propose a data-driven prescriptive analytics framework aiming to integrate the machine learning and … Read more

Scenario Reduction for Risk-Averse Stochastic Programs

In this paper we discuss scenario reduction methods for risk-averse stochastic optimization problems. Scenario reduction techniques have received some attention in the literature and are used by practitioners, as such methods allow for an approximation of the random variables in the problem with a moderate number of scenarios, which in turn make the optimization problem … Read more

Distributionally Robust Newsvendor Problems with Variation Distance

We use distributionally robust stochastic programs (DRSPs) to model a general class of newsvendor problems where the underlying demand distribution is unknown, and so the goal is to find an order quantity that minimizes the worst-case expected cost among an ambiguity set of distributions. The ambiguity set consists of those distributions that are not far—in … Read more

Identifying Effective Scenarios in Distributionally Robust Stochastic Programs with Total Variation Distance

Traditional stochastic programs assume that the probability distribution of uncertainty is known. However, in practice, the probability distribution oftentimes is not known or cannot be accurately approximated. One way to address such distributional ambiguity is to work with distributionally robust convex stochastic programs (DRSPs), which minimize the worst-case expected cost with respect to a set … Read more

Risk aversion in multistage stochastic programming: a modeling and algorithmic perspective

We discuss the incorporation of risk measures into multistage stochastic programs. While much attention has been recently devoted in the literature to this type of model, it appears that there is no consensus on the best way to accomplish that goal. In this paper, we discuss pros and cons of some of the existing approaches. … Read more