Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain … Read more

Effective Scenarios in Multistage Distributionally Robust Optimization with a Focus on Total Variation Distance

We study multistage distributionally robust optimization (DRO) to hedge against ambiguity in quantifying the underlying uncertainty of a problem. Recognizing that not all the realizations and scenario paths might have an “effect” on the optimal value, we investigate the question of how to define and identify critical scenarios for nested multistage DRO problems. Our analysis … Read more

Heteroscedasticity-aware residuals-based contextual stochastic optimization

We explore generalizations of some integrated learning and optimization frameworks for data-driven contextual stochastic optimization that can adapt to heteroscedasticity. We identify conditions on the stochastic program, data generation process, and the prediction setup under which these generalizations possess asymptotic and finite sample guarantees for a class of stochastic programs, including two-stage stochastic mixed-integer programs … Read more

Residuals-based distributionally robust optimization with covariate information

We consider data-driven approaches that integrate a machine learning prediction model within distributionally robust optimization (DRO) given limited joint observations of uncertain parameters and covariates. Our framework is flexible in the sense that it can accommodate a variety of regression setups and DRO ambiguity sets. We investigate asymptotic and finite sample properties of solutions obtained … Read more

Data-driven sample average approximation with covariate information

We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of covariates. Given a new covariate observation, the goal is to choose a decision that minimizes the expected cost conditioned on this observation. We investigate three data-driven frameworks that integrate a machine learning … Read more

Data-DrivenWater Allocation under Climate Uncertainty: A Distributionally Robust Approach

This paper investigates the application of techniques from distributionally robust optimization (DRO) to water allocation under future uncertainty. Specifically, we look at a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The main … Read more

Distributionally Robust Newsvendor Problems with Variation Distance

We use distributionally robust stochastic programs (DRSPs) to model a general class of newsvendor problems where the underlying demand distribution is unknown, and so the goal is to find an order quantity that minimizes the worst-case expected cost among an ambiguity set of distributions. The ambiguity set consists of those distributions that are not far—in … Read more

Phi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization

This paper investigates the use of phi-divergences in ambiguous (or distributionally robust) two-stage stochastic programs. Classical stochastic programming assumes the distribution of uncertain parameters are known. However, the true distribution is unknown in many applications. Especially in cases where there is little data or not much trust in the data, an ambiguity set of distributions … Read more

Identifying Effective Scenarios in Distributionally Robust Stochastic Programs with Total Variation Distance

Traditional stochastic programs assume that the probability distribution of uncertainty is known. However, in practice, the probability distribution oftentimes is not known or cannot be accurately approximated. One way to address such distributional ambiguity is to work with distributionally robust convex stochastic programs (DRSPs), which minimize the worst-case expected cost with respect to a set … Read more

Monte Carlo Sampling-Based Methods for Stochastic Optimization

This paper surveys the use of Monte Carlo sampling-based methods for stochastic optimization problems. Such methods are required when—as it often happens in practice—the model involves quantities such as expectations and probabilities that cannot be evaluated exactly. While estimation procedures via sampling are well studied in statistics, the use of such methods in an optimization … Read more