Cone product reformulation for global optimization

In this paper, we study nonconvex optimization problems involving sum of linear times convex (SLC) functions as well as conic constraints belonging to one of the five basic cones, that is, linear cone, second order cone, power cone, exponential cone, and semidefinite cone. By using the Reformulation Perspectification Technique, we can obtain a convex relaxation … Read more

A novel algorithm for a broad class of nonconvex optimization problems

In this paper, we propose a new global optimization approach for solving nonconvex optimization problems in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex problems can be written in this way, such as concave minimization problems, difference of convex problems, and fractional optimization problems. Our approach exploits … Read more

A Primal-Dual Perspective on Adaptive Robust Linear Optimization

Adaptive robust optimization is a modelling paradigm for multistage optimization under uncertainty where one seeks decisions that minimize the worst-case cost with respect to all possible scenarios in a prescribed uncertainty set. However, optimal policies for adaptive robust optimization problems are difficult to compute. Therefore, one often restricts to the class of affine policies which … Read more

Tractable approximation of hard uncertain optimization problems

In many optimization problems uncertain parameters appear in a convex way, which is problematic as common techniques can only handle concave uncertainty. In this paper, we provide a systematic way to construct conservative approximations to such problems. Specifically, we reformulate the original problem as an adjustable robust optimization problem in which the nonlinearity of the … Read more