A Fixed-Point Continuation Method for l_1-Regularized Minimization with Applications to Compressed Sensing

We consider solving minimization problems with $\ell_1$-regularization: $$\min \|x\|_1 + \mu f(x),$$ particularly for $f(x) = \frac{1}{2}\|Ax-b\|_M^2$ where $A \in \R^{m \times n}$ with $m < n$. Our goal is to construct efficient and robust algorithms for solving large-scale problems with dense data, and our approach is based on two powerful algorithmic ideas, operator-splitting and ... Read more

Second-order Cone Programming Methods for Total Variation-based Image Restoration

In this paper we present optimization algorithms for image restoration based on the total variation (TV) minimization framework of L. Rudin, S. Osher and E. Fatemi (ROF). Our approach formulates TV minimization as a second-order cone program which is then solved by interior-point algorithms that are efficient both in practice (using nested dissection and domain … Read more