Proximal-like contraction methods for monotone variational inequalities in a unified framework
Approximate proximal point algorithms (abbreviated as APPAs) are classical approaches for convex optimization problems and monotone variational inequalities. To solve the subproblems of these algorithms, the projection method takes the iteration in form of $u^{k+1} = P_{\Omega}[u^k-\alpha_k d^k]$. Interestingly, many of them can be paired such that $%\exists \tilde{u}^k, \tilde{u}^k = P_{\Omega}[u^k – \beta_kF(v^k)] = … Read more