Quadratic Two-Stage Stochastic Optimization with Coherent Measures of Risk

A new scheme to cope with two-stage stochastic optimization problems uses a risk measure as the objective function of the recourse action, where the risk measure is defined as the worst-case expected values over a set of constrained distributions. This paper develops an approach to deal with the case where both the first and second … Read more

ON AN EFFICIENT IMPLEMENTATION OF THE FACE ALGORITHM FOR LINEAR PROGRAMMING

In this paper, we consider the solution of the standard linear programming (LP). A remarkable result in LP claims that all optimal solutions form an optimal face of the underlying polyhedron. In practice, many real-world problems have infinitely many optimal solutions and pursuing the optimal face, not just an optimal vertex, is quite desirable. The … Read more

Proximal-like contraction methods for monotone variational inequalities in a unified framework

Approximate proximal point algorithms (abbreviated as APPAs) are classical approaches for convex optimization problems and monotone variational inequalities. To solve the subproblems of these algorithms, the projection method takes the iteration in form of $u^{k+1} = P_{\Omega}[u^k-\alpha_k d^k]$. Interestingly, many of them can be paired such that $%\exists \tilde{u}^k, \tilde{u}^k = P_{\Omega}[u^k – \beta_kF(v^k)] = … Read more