Stable Multi-Sets

In this paper we introduce a generalization of stable sets: stable multi-sets. A stable multi-set is an assignment of integers to the vertices of a graph, such that specified bounds on vertices and edges are not exceeded. In case all vertex and edge bounds equal one, stable multi-sets are equivalent to stable sets. For the … Read more

Solving Steiner tree problems in graphs with Lagrangian relaxation

This paper presents an algorithm to obtain near optimal solutions for the Steiner tree problem in graphs. It is based on a Lagrangian relaxation of a multi-commodity flow formulation of the problem. An extension of the subgradient algorithm, the volume algorithm, has been used to obtain lowe r bounds and to estimate primal solutions. Due … Read more

Reducing the number of AD passes for computing a sparse Jacobian matrix

A reduction in the computational work is possible if we do not require that the nonzeros of a Jacobian matrix be determined directly. If a column or row partition is available, the proposed substitution technique can be used to reduce the number of groups in the partition further. In this chapter, we present a substitution … Read more

Frequency Planning and Ramifications of Coloring

This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical … Read more