Convergence Results for Primal-Dual Algorithms in the Presence of Adjoint Mismatch

Most optimization problems arising in imaging science involve high-dimensional linear operators and their adjoints. In the implementations of these operators, approximations may be introduced for various practical considerations (e.g., memory limitation, computational cost, convergence speed), leading to an adjoint mismatch. This occurs for the X-ray tomographic inverse problems found in Computed Tomography (CT), where the … Read more

Convergence of Proximal Gradient Algorithm in the Presence of Adjoint Mismatch

We consider the proximal gradient algorithm for solving penalized least-squares minimization problems arising in data science. This first-order algorithm is attractive due to its flexibility and minimal memory requirements allowing to tackle large-scale minimization problems involving non-smooth penalties. However, for problems such as X-ray computed tomography, the applicability of the algorithm is dominated by the … Read more