Global Optimization for the Design of Space Trajectories

The problem of optimally designing a trajectory for a space mission is considered in this paper. Actual mission design is a complex, multi-disciplinary and multi-objective activity with relevant economic implications. In this paper we will consider some simplified models proposed by the European Space Agency as test problems for global optimization. We show that many … Read more

Solving molecular distance geometry problems by global optimization algorithms

In this paper we consider global optimization algorithms based on multiple local searches for the Molecular Distance Geometry Problem (MDGP). Three distinct approaches (Multistart, Monotonic Basin Hopping, Population Basin Hopping) are presented and for each of them a computational analysis is performed. The results are also compared with those of two other approaches in the … Read more

Efficiently packing unequal disks in a circle: a computational approach which exploits the continuous and combinatorial structure of the problem

Placing $N$ non-overlapping circles in a smallest container is a well known, widely studied problem that can be easily formulated as a mathematical programming model. Solving this problem is notoriously extremely hard. Recently a public contest has been held for finding putative optimal solutions to a special case in circle packing. The contest saw the … Read more

Disk Packing in a Square: A New Global Optimization Approach

We present a new computational approach to the problem of placing $n$ identical non overlapping disks in the unit square in such a way that their radius is maximized. The problem has been studied in a large number of papers, both from a theoretical and from a computational point of view. In this paper we … Read more

Packing circles in a square: new putative optima obtained via global optimization

The problem of finding the optimal placement of $N$ identical, non overlapping, circles with maximum radius in the unit square is a well known challenge both in classical geometry and in optimization. A database of putative optima is currently maintained at \url{}. Recently, through clever use of an extremely simple global optimization method, we succeeded … Read more

A Population Based Approach for Hard Global Optimization Problems Based on Dissimilarity Measures

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different … Read more

Local optima smoothing for global optimization

It is widely believed that in order to solve large scale global optimization problems an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if first order information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of … Read more

A randomized global optimization method for protein-protein docking

In this paper we report results on the problem of docking two large proteins by means of a two-phase monotonic basin hopping method. Given an appropriate force field which is used to measure the interaction energy between two biomolecules which are considered as rigid bodies, we used a randomized global optimization methods based upon the … Read more

Efficient Algorithms for Large Scale Global Optimization: Lennard-Jones clusters

A standard stochastic global optimization method is applied to the challenging problem of finding the minimum energy conformation of cluster of identical atoms interacting through the Lennard-Jones potential. The method proposed is based on the use of a two-phase local search procedure which is capable of significantly enlarge the basin of attraction of the global … Read more