A Random Block-Coordinate Douglas-Rachford Splitting Method with Low Computational Complexity for Binary Logistic Regression

In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas Rachford splitting method. Our algorithm sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach … Read more

Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods

In view of the minimization of a nonsmooth nonconvex function f, we prove an abstract convergence result for descent methods satisfying a sufficient-decrease assumption, and allowing a relative error tolerance. Our result guarantees the convergence of bounded sequences, under the assumption that the function f satisfies the Kurdyka-Lojasiewicz inequality. This assumption allows to cover a … Read more