## On the Convergence Results of a class of Nonmonotone Accelerated Proximal Gradient Methods for Nonsmooth and Nonconvex Minimization Problems

In this paper, we consider a class of nonsmooth problem that is the sum of a Lipschitz differentiable function and a nonsmooth and proper lower semicontinuous function. We discuss here the convergence rate of the function values for a nonmonotone accelerated proximal gradient method, which proposed in “Huan Li and Zhouchen Lin: Accelerated proximal gradient … Read more

## New Bregman proximal type algorithms for solving DC optimization problems

Difference of Convex (DC) optimization problems have objective functions that are differences between two convex functions. Representative ways of solving these problems are the proximal DC algorithms, which require that the convex part of the objective function have L-smoothness. In this article, we propose the Bregman Proximal DC Algorithm (BPDCA) for solving large-scale DC optimization … Read more

## A Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize Strategy for Nonsmooth and Nonconvex Minimization Problems

We propose a new nonmonontone accelerated proximal gradient method with variable stepsize strategy for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. In this algorithm, the objective function value be allowed to increase discontinuously, but is decreasing from the overall point of view. The variable stepsize strategy don’t … Read more

## A unifying framework for the analysis of projection-free first-order methods under a sufficient slope condition

The analysis of projection-free first order methods is often complicated by the presence of different kinds of “good” and “bad” steps. In this article, we propose a unifying framework for projection-free methods, aiming to simplify the converge analysis by getting rid of such a distinction between steps. The main tool employed in our framework is … Read more

## Active strict saddles in nonsmooth optimization

We introduce a geometrically transparent strict saddle property for nonsmooth functions. This property guarantees that simple proximal algorithms on weakly convex problems converge only to local minimizers, when randomly initialized. We argue that the strict saddle property may be a realistic assumption in applications, since it provably holds for generic semi-algebraic optimization problems. Article Download … Read more

## Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization

Backtracking line-search is an old yet powerful strategy for finding better step size to be used in proximal gradient algorithms. The main principle is to locally find a simple convex upper bound of the objective function, which in turn controls the step size that is used. In case of inertial proximal gradient algorithms, the situation … Read more

## Generalized subdifferentials of spectral functions over Euclidean Jordan algebras

This paper is devoted to the study of generalized subdifferentials of spectral functions over Euclidean Jordan algebras. Spectral functions appear often in optimization problems playing the role of “regularizer”, “barrier”, “penalty function” and many others. We provide formulae for the regular, approximate and horizon subdifferentials of spectral functions. In addition, under local lower semicontinuity, we … Read more

## A gradient type algorithm with backward inertial steps for a nonconvex minimization

We investigate an algorithm of gradient type with a backward inertial step in connection with the minimization of a nonconvex differentiable function. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satis es the Kurdyka-Lojasiewicz property. Further, we provide convergence rates for the … Read more

## Global Convergence in Deep Learning with Variable Splitting via the Kurdyka-{\L}ojasiewicz Property

Deep learning has recently attracted a significant amount of attention due to its great empirical success. However, the effectiveness in training deep neural networks (DNNs) remains a mystery in the associated nonconvex optimizations. In this paper, we aim to provide some theoretical understanding on such optimization problems. In particular, the Kurdyka-{\L}ojasiewicz (KL) property is established … Read more

## Convergence rates for an inertial algorithm of gradient type associated to a smooth nonconvex minimization

We investigate an inertial algorithm of gradient type in connection with the minimization of a nonconvex differentiable function. The algorithm is formulated in the spirit of Nesterov’s accelerated convex gradient method. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satis es the … Read more