Exact SDP Relaxations with Truncated Moment Matrix for Binary Polynomial Optimization Problems

For binary polynomial optimization problems (POPs) of degree $d$ with $n$ variables, we prove that the $\lceil(n+d-1)/2\rceil$th semidefinite (SDP) relaxation in Lasserre’s hierarchy of the SDP relaxations provides the exact optimal value. If binary POPs involve only even-degree monomials, we show that it can be further reduced to $\lceil(n+d-2)/2\rceil$. This bound on the relaxation order … Read more

Correlative sparsity in primal-dual interior-point methods for LP, SDP and SOCP

Exploiting sparsity has been a key issue in solving large-scale optimization problems. The most time-consuming part of primal-dual interior-point methods for linear programs, second-order cone programs, and semidefinite programs is solving the Schur complement equation at each iteration, usually by the Cholesky factorization. The computational efficiency is greatly affected by the sparsity of the coefficient … Read more