A Fixed-Point Continuation Method for l_1-Regularized Minimization with Applications to Compressed Sensing

We consider solving minimization problems with $\ell_1$-regularization: $$\min \|x\|_1 + \mu f(x),$$ particularly for $f(x) = \frac{1}{2}\|Ax-b\|_M^2$ where $A \in \R^{m \times n}$ with $m < n$. Our goal is to construct efficient and robust algorithms for solving large-scale problems with dense data, and our approach is based on two powerful algorithmic ideas, operator-splitting and ... Read more

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, … Read more