Directed modified Cholesky factorizations and convex quadratic relaxations

A directed Cholesky factorization of a symmetric interval matrix \A consists of a permuted upper triangular matrix R such that for all symmetric A \in \A, the residual matrix A – R^T R is positive semidefinite with tiny entries. This must holds with full mathematical rigor, although the computations are done in floating-point arithmetic. Similarly, … Read more

A scaling algorithm for polynomial constraint satisfaction problems

Good scaling is an essential requirement for the good behavior of many numerical algorithms. In particular, for problems involving multivariate polynomials, a change of scale in one or more variable may have drastic effects on the robustness of subsequent calculations. This paper surveys scaling algorithms for systems of polynomials from the literature, and discusses some … Read more

Rigorous enclosures of ellipsoids and directed Cholesky factorizations

This paper discusses the rigorous enclosure of an ellipsoid by a rectangular box, its interval hull, providing a convenient preprocessing step for constrained optimization problems. A quadratic inequality constraint with a positive definite Hessian defines an ellipsoid. The Cholesky factorization can be used to transform a strictly convex quadratic constraint into a norm inequality, for … Read more