A proximal-perturbed Bregman ADMM for solving nonsmooth and nonconvex optimization problems

In this paper, we focus on a linearly constrained composite minimization problem whose objective function is possibly nonsmooth and nonconvex. Unlike the traditional construction of augmented Lagrangian function, we provide a proximal-perturbed augmented Lagrangian and then develop a new Bregman Alternating Direction Method of Multipliers (ADMM). Under mild assumptions, we show that the novel augmented … Read more

Convergence Analysis on A Data-deriven Inexact Proximal-indefinite Stochastic ADMM

In this paper, we propose an Inexact Proximal-indefinite Stochastic ADMM (abbreviated as IPS-ADMM) to solve a class of separable convex optimization problems whose objective functions consist of two parts: one is an average of many smooth convex functions and the other is a convex but potentially nonsmooth function. The involved smooth subproblem is tackled by … Read more

Convergence analysis of an inexact relaxed augmented Lagrangian method

In this paper, we develop an Inexact Relaxed Augmented Lagrangian Method (IR-ALM) for solving a class of convex optimization problems. Flexible relative error criteria are designed for approximately solving the resulting subproblem, and a relaxation step is exploited to accelerate its convergence numerically. By a unified variational analysis, we establish the global convergence of this … Read more

A New Insight on Augmented Lagrangian Method with Applications in Machine Learning

By exploiting double-penalty terms for the primal subproblem, we develop a novel relaxed augmented Lagrangian method for solving a family of convex optimization problems subject to equality or inequality constraints. This new method is then extended to solve a general multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. … Read more