On complexity and convergence of high-order coordinate descent algorithms

Coordinate descent methods with high-order regularized models for box-constrained minimization are introduced. High-order stationarity asymptotic convergence and first-order stationarity worst-case evaluation complexity bounds are established. The computer work that is necessary for obtaining first-order $\varepsilon$-stationarity with respect to the variables of each coordinate-descent block is $O(\varepsilon^{-(p+1)/p})$ whereas the computer work for getting first-order $\varepsilon$-stationarity with … Read more

On complexity and convergence of high-order coordinate descent algorithms

Coordinate descent methods with high-order regularized models for box-constrained minimization are introduced. High-order stationarity asymptotic convergence and first-order stationarity worst-case evaluation complexity bounds are established. The computer work that is necessary for obtaining first-order $\varepsilon$-stationarity with respect to the variables of each coordinate-descent block is $O(\varepsilon^{-(p+1)/p})$ whereas the computer work for getting first-order $\varepsilon$-stationarity with … Read more

A Dynamic Penalty Parameter Updating Strategy for Matrix-Free Sequential Quadratic Optimization

This paper focuses on the design of sequential quadratic optimization (commonly known as SQP) methods for solving large-scale nonlinear optimization problems. The most computationally demanding aspect of such an approach is the computation of the search direction during each iteration, for which we consider the use of matrix-free methods. In particular, we develop a method … Read more