Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

An Inexact First-order Method for Constrained Nonlinear Optimization

The primary focus of this paper is on designing inexact first-order methods for solving large-scale constrained nonlinear optimization problems. By controlling the inexactness of the subproblem solution, we can significantly reduce the computational cost needed for each iteration. A penalty parameter updating strategy during the subproblem solve enables the algorithm to automatically detect infeasibility. Global … Read more

A Dynamic Penalty Parameter Updating Strategy for Matrix-Free Sequential Quadratic Optimization

This paper focuses on the design of sequential quadratic optimization (commonly known as SQP) methods for solving large-scale nonlinear optimization problems. The most computationally demanding aspect of such an approach is the computation of the search direction during each iteration, for which we consider the use of matrix-free methods. In particular, we develop a method … Read more

Error bounds for rank constrained optimization problems and applications

This paper is concerned with the rank constrained optimization problem whose feasible set is the intersection of the rank constraint set $\mathcal{R}=\!\big\{X\in\mathbb{X}\ |\ {\rm rank}(X)\le \kappa\big\}$ and a closed convex set $\Omega$. We establish the local (global) Lipschitzian type error bounds for estimating the distance from any $X\in \Omega$ ($X\in\mathbb{X}$) to the feasible set and … Read more

Exact penalty decomposition method for zero-norm minimization based on MPEC formulation

We reformulate the zero-norm minimization problem as an equivalent mathematical program with equilibrium constraints and establish that its penalty problem, induced by adding the complementarity constraint to the objective, is exact. Then, by the special structure of the exact penalty problem, we propose a decomposition method that can seek a global optimal solution of the … Read more


In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this … Read more

Iterative Reweighted Linear Least Squares for Exact Penalty Subproblems on Product Sets

We present two matrix-free methods for solving exact penalty subproblems on product sets that arise when solving large-scale optimization problems. The first approach is a novel iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) … Read more

A Linesearch-based Derivative-free Approach for Nonsmooth Optimization

In this paper, we propose new linesearch-based methods for nonsmooth optimization problems when first-order information on the problem functions is not available. In the first part, we describe a general framework for bound-constrained problems and analyze its convergence towards stationary points, using the Clarke-Jahn directional derivative. In the second part, we consider inequality constrained optimization … Read more

Constraint Reduction with Exact Penalization for Model-Predictive Rotorcraft Control

Model Predictive Control (also known as Receding Horizon Control (RHC)) has been highly successful in process control applications. Its use for aerospace applications has been hindered by its high computational requirements. In the present paper, we propose using enhanced primal-dual interior-point optimization techniques in the convex-quadratic-program-based RHC control of a rotorcraft. Our enhancements include a … Read more

Differentiable exact penalty functions for nonlinear second-order cone programs

We propose a method to solve nonlinear second-order cone programs (SOCPs), based on a continuously differentiable exact penalty function. The construction of the penalty function is given by incorporating a multipliers estimate in the augmented Lagrangian for SOCPs. Under the nondegeneracy assumption and the strong second-order sufficient condition, we show that a generalized Newton method … Read more