Wasserstein Distributionally Robust Optimization with Heterogeneous Data Sources

We study decision problems under uncertainty, where the decision-maker has access to K data sources that carry biased information about the underlying risk factors. The biases are measured by the mismatch between the risk factor distribution and the K data-generating distributions with respect to an optimal transport (OT) distance. In this situation the decision-maker can … Read more

Maximum Likelihood Probability Measures over Sets and Applications to Data-Driven Optimization

Motivated by data-driven approaches to sequential decision-making under uncertainty, we study maximum likelihood estimation of a distribution over a general measurable space when, unlike traditional setups, realizations of the underlying uncertainty are not directly observable but instead are known to lie within observable sets. While extant work studied the special cases when the observed sets … Read more

Robust Generalization despite Distribution Shift via Minimum Discriminating Information

Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use … Read more

A General Framework for Optimal Data-Driven Optimization

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision … Read more

From Predictive to Prescriptive Analytics

In this paper, we combine ideas from machine learning (ML) and operations research and management science (OR/MS) in developing a framework, along with specific methods, for using data to prescribe optimal decisions in OR/MS problems. In a departure from other work on data-driven optimization and reflecting our practical experience with the data available in applications … Read more