A First-Order Augmented Lagrangian Method for Compressed Sensing

We propose a First-order Augmented Lagrangian algorithm (FAL) for solving the basis pursuit problem. FAL computes a solution to this problem by inexactly solving a sequence of L1-regularized least squares sub-problems. These sub-problems are solved using an infinite memory proximal gradient algorithm wherein each update reduces to “shrinkage” or constrained “shrinkage”. We show that FAL … Read more

Coordinate and Subspace Optimization Methods for Linear Least Squares with Non-Quadratic Regularization

This work addresses the problem of regularized linear least squares (RLS) with non-quadratic separable regularization. Despite being frequently deployed in many applications, the RLS problem is often hard to solve using standard iterative methods. In a recent work [10], a new iterative method called Parallel Coordinate Descent (PCD) was devised. We provide herein a convergence … Read more