Distributionally Robust Mechanism Design

We study a mechanism design problem where an indivisible good is auctioned to multiple bidders, for each of whom it has a private value that is unknown to the seller and the other bidders. The agents perceive the ensemble of all bidder values as a random vector governed by an ambiguous probability distribution, which belongs … Read more

An Augmented Lagrangian Method for Conic Convex Programming

We propose a new first-order augmented Lagrangian algorithm ALCC for solving convex conic programs of the form min{rho(x)+gamma(x): Ax-b in K, x in chi}, where rho and gamma are closed convex functions, and gamma has a Lipschitz continuous gradient, A is mxn real matrix, K is a closed convex cone, and chi is a “simple” … Read more

A new robust cycle-based inventory control policy

In this paper, we propose a new robust cycle-based control policy for single installation inventory models with non-stationary uncertain demand. The policy is simple, flexible, easily implementable and preliminary numerical experiments suggest that the policy has very promising empirical performance. The policy can be used both when the excess demand is backlogged as well as … Read more

Fast First-Order Methods for Stable Principal Component Pursuit

The stable principal component pursuit (SPCP) problem is a non-smooth convex optimization problem, the solution of which has been shown both in theory and in practice to enable one to recover the low rank and sparse components of a matrix whose elements have been corrupted by Gaussian noise. In this paper, we first show how … Read more

Feasible and accurate algorithms for covering semidefinite programs

In this paper we describe an algorithm to approximately solve a class of semidefinite programs called covering semidefinite programs. This class includes many semidefinite programs that arise in the context of developing algorithms for important optimization problems such as sparsest cut, wireless multicasting, and pattern classification. We give algorithms for covering SDPs whose dependence on … Read more

A Unified Approach for Minimizing Composite Norms

We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem min |sigma(F(X)-G)|_alpha + |C(X)- d|_beta subject to A(X)-b in Q; where sigma(X) denotes the vector of singular values of X, the matrix norm |sigma(X)|_alpha denotes either the Frobenius, the nuclear, or the L2-operator norm of X, the vector norm |.|_beta … Read more

A First-Order Augmented Lagrangian Method for Compressed Sensing

We propose a First-order Augmented Lagrangian algorithm (FAL) for solving the basis pursuit problem. FAL computes a solution to this problem by inexactly solving a sequence of L1-regularized least squares sub-problems. These sub-problems are solved using an infinite memory proximal gradient algorithm wherein each update reduces to “shrinkage” or constrained “shrinkage”. We show that FAL … Read more

A First-Order Smoothed Penalty Method for Compressed Sensing

We propose a first-order smoothed penalty algorithm (SPA) to solve the sparse recovery problem min{||x||_1 : Ax=b}. SPA is efficient as long as the matrix-vector product Ax and A^Ty can be computed efficiently; in particular, A need not be an orthogonal projection matrix. SPA converges to the target signal by solving a sequence of penalized … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

Faster approximation algorithms for packing and covering problems

We adapt a method due to Nesterov so as to obtain an algorithm for solving block-angular fractional packing or covering problems to relative tolerance epsilon, while using a number of iterations that grows polynomially in the size of the problem and whose dependency on epsilon is proportional to 1/epsilon. CitationCORC report TR-2004-09, Computational Optimization Research … Read more