A remark on the lower semicontinuity assumption in the Ekeland variational principle

What happens to the conclusion of the Ekeland variational principle (briefly, EVP) if a considered function $f:X\to \R\cup\{+\infty\}$ is lower semicontinuous not on a whole metric space $X$ but only on its domain? We provide a straightforward proof showing that it still holds but only for $\epsilon $ varying in some interval $]0,\beta-\inf_Xf[$, where $\beta$ … Read more

An induction theorem and nonlinear regularity models

A general nonlinear regularity model for a set-valued mapping $F:X\times\R_+\rightrightarrows Y$, where $X$ and $Y$ are metric spaces, is considered using special iteration procedures, going back to Banach, Schauder, Lusternik and Graves. Namely, we revise the \emph{induction theorem} from Khanh, \emph{J. Math. Anal. Appl.}, 118 (1986) and employ it to obtain basic estimates for studying … Read more

THE EKELAND VARIATIONAL PRINCIPLE FOR HENIG PROPER MINIMIZERS AND SUPER MINIMIZERS

In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F with values in a partially ordered vector space and formulate two versions of the Ekeland variational principle for these points involving coderivatives in the senses of Ioffe, Clarke and Mordukhovich. As applications we … Read more