Uncapacitated Lot Sizing with Backlogging: The Convex Hull

An explicit description of the convex hull of solutions to the uncapacitated lot-sizing problem with backlogging, in its natural space of production, setup, inventory and backlogging variables, has been an open question for many years. In this paper, we identify facet-defining inequalities that subsume all previously known valid inequalities for this problem. We show that … Read more

Set covering and packing formulations of graph coloring: algorithms and first polyhedral results

We consider two (0,1)-linear programming formulations of the graph (vertex-)coloring problem, in which variables are associated to stable sets of the input graph. The first one is a set covering formulation, where the set of vertices has to be covered by a minimum number of stable sets. The second is a set packing formulation, in … Read more

Sequential pairing of mixed integer inequalities

We present a scheme for generating new valid inequalities for mixed integer programs by taking pair-wise combinations of existing valid inequalities. Our scheme is related to mixed integer rounding and mixing. The scheme is in general sequence-dependent and therefore leads to an exponential number of inequalities. For some important cases, we identify combination sequences that … Read more

Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation

We investigate the polyhedral structure of the lot-sizing problem with inventory bounds. We consider two models, one with linear costs on inventory, the other with linear and fixed costs on inventory. For both models, we identify facet-defining inequalities that make use of the inventory capacities explicitly and give exact separation algorithms. We also give a … Read more