Block-diagonal semidefinite programming hierarchies for 0/1 programming

Lovasz and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations for general 0/1 linear programming problems. In this paper these two constructions are revisited and a new, block-diagonal hierarchy is proposed. It has the advantage of being computationally less costly while being at least as strong as the Lovasz-Schrijver hierarchy. It is applied … Read more

Set covering and packing formulations of graph coloring: algorithms and first polyhedral results

We consider two (0,1)-linear programming formulations of the graph (vertex-)coloring problem, in which variables are associated to stable sets of the input graph. The first one is a set covering formulation, where the set of vertices has to be covered by a minimum number of stable sets. The second is a set packing formulation, in … Read more

Stable Sets of Weak Tournaments

The purpose of this paper is to obtain conditions on weak tournaments, which guarantee that every non-empty subset of alternatives admits a stable set. We show that every stable set always contains the core. We also show that there exists a unique stable set for each non-empty subset of alternatives which coincides with its core … Read more

Solving Stability Problems on a Superclass of Interval Graphs

We introduce a graph invariant, called thinness, and show that a maximum weighted stable set on a graph $G(V, E)$ with thinness $k$ may be found in $O(\frac{|V|}{k})^k$-time, if a certain representation is given. We show that a graph has thinness 1 if and only if it is an interval graph, while a graph with … Read more