A Robust Optimization Method with Successive Linear Programming for Intensity Modulated Radiation Therapy

Intensity modulated radiation therapy (IMRT) is one of radiation therapies for cancers, and it is considered to be effective for complicated shapes of tumors, since dose distributions from each irradiation can be modulated arbitrary. Fluence map optimization (FMO), which optimizes beam intensities with given beam angles, is often formulated as an optimization problem with dose … Read more

A Successive LP Approach with C-VaR Type Constraints for IMRT Optimization

Radiation therapy is considered to be one of important treatment protocols for cancers. Radiation therapy employs several beams of ionizing radiation to kill cancer tumors, but such irradiation also causes damage to normal tissues. Therefore, a treatment plan should satisfy dose-volume constraints (DVCs). Intensity-modulated radiotherapy treatment (IMRT) enables to control the beam intensities and gives … Read more

A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search

This paper presents a new two-phase solution approach to the beam angle and fluence map optimization problem in Intensity Modulated Radiation Therapy (IMRT) planning. We introduce Branch-and-Prune (B&P) to generate a robust feasible solution in the first phase. A local neighborhood search algorithm is developed to find a local optimal solution from the Phase I … Read more