Continuous GRASP with a local active-set method for bound-constrained global optimization

Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic – based on the CGRASP and GENCAN methods – for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN … Read more

GRASP with path-relinking for the generalized quadratic assignment problem

The generalized quadratic assignment problem (GQAP) is a generalization of the NP-hard quadratic assignment problem (QAP) that allows multiple facilities to be assigned to a single location as long as the capacity of the location allows. The GQAP has numerous applications, including facility design, scheduling, and network design. In this paper, we propose several GRASP … Read more

Detecting Critical Nodes in Sparse Graphs

Identifying critical nodes in a graph is important to understand the structural characteristics and the connectivity properties of the network. In this paper, we focus on detecting critical nodes, or nodes whose deletion results in the minimum pair-wise connectivity among the remaining nodes. This problem, known as the CRITICAL NODE PROBLEM has applications in several … Read more

GRASP: Advances and applications

GRASP is a multi-start metaheuristic for combinatorial optimization problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this … Read more

GRASP

GRASP is a multi-start metaheuristic for combinatorial optimization problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. An intensification … Read more

GRASP: Basic components and enhancements

GRASP (Greedy Randomized Adaptive Search Procedures) is a multistart metaheuristic for producing good-quality solutions of combinatorial optimization problems. Each GRASP iteration is usually made up of a construction phase, where a feasible solution is constructed, and a local search phase which starts at the constructed solution and applies iterative improvement until a locally optimal solution … Read more

Hybrid GRASP heuristics

Experience has shown that a crafted combination of concepts of different metaheuristics can result in robust combinatorial optimization schemes and produce higher solution quality than the individual metaheuristics themselves, especially when solving difficult real-world combinatorial optimization problems. This chapter gives an overview of different ways to hybridize GRASP (Greedy Randomized Adaptive Search Procedures) to create … Read more

Scalable Heuristics for Stochastic Programming with Scenario Selection

We describe computational procedures to solve a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progressive hedging algorithm. Experiments demonstrate the … Read more

Efficient implementations of heuristics for routing and wavelength assignment

The problem of Routing and Wavelength Assignment in Wavelength Division Multiplexing (WDM) optical networks consists in routing a set of lightpaths and assigning a wavelength to each of them, such that lightpaths whose routes share a common fiber are assigned to different wavelengths. When the objective is to minimize the total number of wavelengths used, … Read more

A CONSTRUCTIVE HEURISTIC FOR THE INTEGRATED INVENTORY-DISTRIBUTION PROBLEM

We study the integrated inventory distribution problem which is concerned with multiperiod inventory holding, backlogging, and vehicle routing decisions for a set of customers who receive units of a single item from a depot with infinite supply. We consider an environment in which the demand at each customer is deterministic and relatively small compared to … Read more