ALGORITHM & DOCUMENTATION: MINRES-QLP for Singular Symmetric and Hermitian Linear Equations and Least-Squares Problems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite … Read more

MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This … Read more

Multiscale Concepts for Moving Horizon Optimization

In chemical engineering complex dynamic optimization problems formulated on moving horizons have to be solved on-line. In this work, we present a multiscale approach based on wavelets where a hierarchy of successively, adaptively refined problems are constructed.They are solved in the framework of nested iteration as long as the real-time restrictions are fulfilled. To avoid … Read more