Tractable Robust Supervised Learning Models

At the heart of supervised learning is a minimization problem with an objective function that evaluates a set of training data over a loss function that penalizes poor fitting and a regularization function that penalizes over-fitting to the training data. More recently, data-driven robust optimization based learning models provide an intuitive robustness perspective of regularization. … Read more

Cardinality Minimization, Constraints, and Regularization: A Survey

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and … Read more

Design of Poisoning Attacks on Linear Regression Using Bilevel Optimization

Poisoning attack is one of the attack types commonly studied in the field of adversarial machine learning. The adversary generating poison attacks is assumed to have access to the training process of a machine learning algorithm and aims to prevent the algorithm from functioning properly by injecting manipulative data while the algorithm is being trained. … Read more

Heteroscedasticity-aware residuals-based contextual stochastic optimization

We explore generalizations of some integrated learning and optimization frameworks for data-driven contextual stochastic optimization that can adapt to heteroscedasticity. We identify conditions on the stochastic program, data generation process, and the prediction setup under which these generalizations possess asymptotic and finite sample guarantees for a class of stochastic programs, including two-stage stochastic mixed-integer programs … Read more

Data-driven sample average approximation with covariate information

We study optimization for data-driven decision-making when we have observations of the uncertain parameters within the optimization model together with concurrent observations of covariates. Given a new covariate observation, the goal is to choose a decision that minimizes the expected cost conditioned on this observation. We investigate three data-driven frameworks that integrate a machine learning … Read more

Convex Variational Formulations for Learning Problems

Abstract—In this article, we introduce new techniques to solve the nonlinear regression problem and the nonlinear classification problem. Our benchmarks suggest that our method for regression is significantly more effective when compared to classical methods and our method for classification is competitive. Our list of classical methods includes least squares, random forests, decision trees, boosted … Read more

ALGORITHM & DOCUMENTATION: MINRES-QLP for Singular Symmetric and Hermitian Linear Equations and Least-Squares Problems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite … Read more

General algorithmic frameworks for online problems

We study general algorithmic frameworks for online learning tasks. These include binary classification, regression, multiclass problems and cost-sensitive multiclass classification. The theorems that we present give loss bounds on the behavior of our algorithms that depend on general conditions on the iterative step sizes. Citation International Journal of Pure and Applied Mathematics, Vol. 46 (2008), … Read more

Generalized Goal Programming: Polynomial Methods and Applications

In this paper we address a general Goal Programming problem with linear objectives, convex constraints, and an arbitrary componentwise nondecreasing norm to aggregate deviations with respect to targets. In particular, classical Linear Goal Programming problems, as well as several models in Location and Regression Analysis are modeled within this framework. In spite of its generality, … Read more