Benders Decomposition with Adaptive Oracles for Large Scale Optimization

This paper proposes an algorithm to efficiently solve large optimization problems which exhibit a column bounded block-diagonal structure, where subproblems differ in right-hand side and cost coefficients. Similar problems are often tackled using cutting-plane algorithms, which allow for an iterative and decomposed solution of the problem. When solving subproblems is computationally expensive and the set … Read more

Bundle methods in the XXIst century: A bird’s-eye view

Bundle methods are often the algorithms of choice for nonsmooth convex optimization, especially if accuracy in the solution and reliability are a concern. We review several algorithms based on the bundle methodology that have been developed recently and that, unlike their forerunner variants, have the ability to provide exact solutions even if most of the … Read more

Constrained Bundle Methods for Upper Inexact Oracles with Application to Joint Chance Constrained Energy Problems

Joint chance constrained problems give rise to many algorithmic challenges. Even in the convex case, i.e., when an appropriate transformation of the probabilistic constraint is a convex function, its cutting-plane linearization is just an approximation, produced by an oracle providing subgradient and function values that can only be evaluated inexactly. As a result, the cutting-plane … Read more

Level Bundle Methods for oracles with on-demand accuracy

For nonsmooth convex optimization, we consider level bundle methods built using an oracle that computes values for the objective function and a subgradient at any given feasible point. For the problems of interest, the exact oracle information is computable, but difficult to obtain. In order to save computational effort the oracle can provide estimations with … Read more