A Preconditioner for a Primal-Dual Newton Conjugate Gradients Method for Compressed Sensing Problems

In this paper we are concerned with the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. We extend a primal-dual Newton Conjugate Gradients (pdNCG) method for CS problems. We provide an inexpensive and provably effective preconditioning technique for linear systems using pdNCG. Numerical results … Read more

A Second-Order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries

In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. … Read more

One condition for all: solution uniqueness and robustness of l1-synthesis and l1-analysis minimizations

The l1-synthesis and l1-analysis models recover structured signals from their undersampled measurements. The solution of the former model is often a sparse sum of dictionary atoms, and that of the latter model often makes sparse correlations with dictionary atoms. This paper addresses the question: when can we trust these models to recover specific signals? We … Read more