Successive Rank-One Approximations of Nearly Orthogonally Decomposable Symmetric Tensors

Many idealized problems in signal processing, machine learning and statistics can be reduced to the problem of finding the symmetric canonical decomposition of an underlying symmetric and orthogonally decomposable (SOD) tensor. Drawing inspiration from the matrix case, the successive rank-one approximations (SROA) scheme has been proposed and shown to yield this tensor decomposition exactly, and … Read more

A Second-Order Method for Compressed Sensing Problems with Coherent and Redundant Dictionaries

In this paper we are interested in the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. CS problems of this type are convex with non-smooth and non-separable regularization term, therefore a specialized solver is required. We propose a primal-dual Newton Conjugate Gradients (pdNCG) method. … Read more

Linearizing the Method of Conjugate Gradients

The method of conjugate gradients (CG) is widely used for the iterative solution of large sparse systems of equations $Ax=b$, where $A\in\Re^{n\times n}$ is symmetric positive definite. Let $x_k$ denote the $k$–th iterate of CG. In this paper we obtain an expression for $J_k$, the Jacobian matrix of $x_k$ with respect to $b$. We use … Read more