A Linear Programming Approach to Semidefinite Programming Problems

Until recently, the study of interior point methods has dominated algorithmic research in semidefinite programming (SDP). From a theoretical point of view, these interior point methods offer everything one can hope for; they apply to all SDP’s, exploit second order information and offer polynomial time complexity. Still for practical applications with many constraints $k$, the … Read more

A study of preconditioners for network interior point methods

We study and compare preconditioners available for network interior point methods. We derive upper bounds for the condition number of the preconditioned matrices used in the solution of systems of linear equations defining the algorithm search directions. The preconditioners are tested using PDNET, a state-of-the-art interior point code for the minimum cost network flow problem. … Read more

A New and Efficient Large-Update Interior-Point Method for Linear Optimization

Recently, the authors presented a new large-update primal-dual method for Linear Optimization, whose $O(n^\frac23\,\log\frac{n}{\e})$ iteration bound substantially improved the classical bound for such methods, which is $O\br{n\log\frac{n}{\e}}$. In this paper we present an improved analysis of the new method. The analysis uses some new mathematical tools developed before when we considered a whole family of … Read more

An Interior-Point Approach to Sensitivity Analysis in Degenerate Linear Programs

We consider the interior-point approach to sensitivity analysis in linear programming (LP) developed by the authors. We investigate the quality of the interior-point bounds under degeneracy. In the case of a special degeneracy, we show that these bounds have the same nice relationship with the optimal partition bounds as in the nondegenerate case. We prove … Read more

Hyper-sparsity in the revised simplex method and how to exploit it

The revised simplex method is often the method of choice when solving large scale sparse linear programming problems, particularly when a family of closely-related problems is to be solved. Each iteration of the revised simplex method requires the solution of two linear systems and a matrix vector product. For a significant number of practical problems … Read more

Warm start strategies in interior-point methods for linear programming

We study the situation in which, having solved a linear program with an interior-point method, we are presented with a new problem instance whose data is slightly perturbed from the original. We describe strategies for recovering a “warm-start” point for the perturbed problem instance from the iterates of the original problem instance. We obtain worst-case … Read more

A New Class of Polynomial Primal-Dual Methods for Linear and Semidefinite Optimization

We propose a new class of primal-dual methods for linear optimization (LO). By using some new analysis tools, we prove that the large update method for LO based on the new search direction has a polynomial complexity $O\br{n^{\frac{4}{4+\rho}}\log\frac{n}{\e}}$ iterations where $\rho\in [0,2]$ is a parameter used in the system defining the search direction. If $\rho=0$, … Read more