Tighter yet more tractable relaxations and nontrivial instance generation for sparse standard quadratic optimization
The Standard Quadratic optimization Problem (StQP), arguably the simplest among all classes of NP-hard optimization problems, consists of extremizing a quadratic form (the simplest nonlinear polynomial) over the standard simplex (the simplest polytope/compact feasible set). As a problem class, StQPs may be nonconvex with an exponential number of inefficient local solutions. StQPs arise in a … Read more