Limiting behavior of the central path in semidefinite optimization

It was recently shown that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and … Read more

Condition and complexity measures for infeasibility certificates of systems of linear inequalities and their sensitivity analysis

We begin with a study of the infeasibility measures for linear programming problems. For this purpose, we consider feasibility problems in Karmarkar’s standard form. Our main focus is on the complexity measures which can be used to bound the amount of computational effort required to solve systems of linear inequalities and related problems in certain … Read more

A binary LP model to the facility layout problem

In facility layout problems, a major concern is the optimal design or remodeling of the facilities of an organization. The decision-maker’s objective is to arrange the facility in an optimal way, so that the interaction among functions (i.e. machines, inventories, persons) and places (i.e. offices, work locations, depots) is efficient. A simple pure-binary LP model … Read more

Large-Scale Linear Programming Techniques for the Design of Protein Folding Potentials

We present large-scale optimization techniques to model the energy function that underlies the folding process of proteins. Linear Programming is used to identify parameters in the energy function model, the objective being that the model predict the structure of known proteins correctly. Such trained functions can then be used either for {\em ab-initio} prediction or … Read more

Computational Experience and the Explanatory Value of Condition Numbers for Linear Optimization

The goal of this paper is to develop some computational experience and test the practical relevance of the theory of condition numbers C(d) for linear optimization, as applied to problem instances that one might encounter in practice. We used the NETLIB suite of linear optimization problems as a test bed for condition number computation and … Read more

A Dynamic Large-Update Primal-Dual Interior-Point Method for Linear Optimization

Primal-dual interior-point methods (IPMs) have shown their power in solving large classes of optimization problems. However, at present there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results, with respect to the strategies of updating the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy … Read more

Continuous trajectories for primal-dual potential-reduction methods

This article considers continuous trajectories of the vector fields induced by two different primal-dual potential-reduction algorithms for solving linear programming problems. For both algorithms, it is shown that the associated continuous trajectories include the central path and the duality gap converges to zero along all these trajectories. For the algorithm of Kojima, Mizuno, and Yoshise, … Read more

SDPT3 – a MATLAB software package for semidefinite-quadratic-linear programming, version 3.0

This software package is a MATLAB implementation of infeasible path-following algorithms for solving conic programming problems whose constraint cone is a product of semidefinite cones, second-order cones, and/or nonnegative orthants. It employs a predictor-corrector primal-dual path-following method, with either the HKM or the NT search direction. The basic code is written in Matlab, but key … Read more

Semi-infinite linear programming approaches to semidefinite programming problems

Interior point methods, the traditional methods for the $SDP$, are fairly limited in the sizes of problems they can handle. This paper deals with an $LP$ approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the $SDP$ and discuss the issue of its discretization in some detail. We … Read more

On the convergence of the central path in semidefinite optimization

The central path in linear optimization always converges to the analytic center of the optimal set. This result was extended to semidefinite programming by Goldfarb and Scheinberg (SIAM J. Optim. 8: 871-886, 1998). In this paper we show that this latter result is not correct in the absence of strict complementarity. We provide a counterexample, … Read more