Coercive polynomials: Stability, order of growth, and Newton polytopes

In this article we introduce a stability concept for the coercivity of multivariate polynomials $f \in \mathbb{R}[x]$. In particular, we consider perturbations of $f$ by polynomials up to the so-called degree of stable coercivity, and we analyze this stability concept in terms of the corresponding Newton polytopes at infinity. For coercive polynomials $f \in \mathbb{R}[x]$ … Read more

Coercive polynomials and their Newton polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on $\mathbb{R}^n$ of multivariate polynomials $f\in \mathbb{R}[x]$ in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on … Read more

Algorithmic aspects of sums of hermitian squares of noncommutative polynomials

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper … Read more

Semidefinite programming and sums of hermitian squares of noncommutative polynomials

An algorithm for finding sums of hermitian squares decompositions for polynomials in noncommuting variables is presented. The algorithm is based on the “Newton chip method”, a noncommutative analog of the classical Newton polytope method, and semide finite programming. CitationI. Klep and J. Povh. Semide nite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. … Read more