A Gentle, Geometric Introduction to Copositive Optimization

This paper illustrates the fundamental connection between nonconvex quadratic optimization and copositive optimization—a connection that allows the reformulation of nonconvex quadratic problems as convex ones in a unified way. We intend the paper for readers new to the area, and hence the exposition is largely self-contained. We focus on examples having just a few variables … Read more

Simplified Copositive and Lagrangian Relaxations for Linearly Constrained Quadratic Optimization Problems in Continuous and Binary Variables

For a quadratic optimization problem (QOP) with linear equality constraints in continuous nonnegative variables and binary variables, we propose three relaxations in simplified forms with a parameter $\lambda$: Lagrangian, completely positive, and copositive relaxations. These relaxations are obtained by reducing the QOP to an equivalent QOP with a single quadratic equality constraint in nonnegative variables, … Read more