Revisiting semidefinite programming approaches to options pricing: complexity and computational perspectives

In this paper we consider the problem of finding bounds on the prices of options depending on multiple assets without assuming any underlying model on the price dynamics, but only the absence of arbitrage opportunities. We formulate this as a generalized moment problem and utilize the well-known Moment-Sum-of-Squares (SOS) hierarchy of Lasserre to obtain bounds … Read more

A nonparametric algorithm for optimal stopping based on robust optimization

Optimal stopping is a fundamental class of stochastic dynamic optimization problems with numerous applications in finance and operations management. We introduce a new approach for solving computationally- demanding stochastic optimal stopping problems with known probability distributions. The approach uses simulation to construct a robust optimization problem that approximates the stochastic optimal stopping problem to any … Read more

On the Solution of Complementarity Problems Arising in American Options Pricing

In the Black-Scholes-Merton model, as well as in more general stochastic models in finance, the price of an American option solves a system of partial differential variational inequalities. When these inequalities are discretized, one obtains a linear complementarity problem that must be solved at each time step. This paper presents an algorithm for the solution … Read more