Safe and Verified Gomory Mixed Integer Cuts in a Rational MIP Framework

This paper is concerned with the exact solution of mixed-integer programs (MIPs) over the rational numbers, i.e., without any roundoff errors and error tolerances. Here, one computational bottleneck that should be avoided whenever possible is to employ large-scale symbolic computations. Instead it is often possible to use safe directed rounding methods, e.g., to generate provably … Read more

A Computational Status Update for Exact Rational Mixed Integer Programming

The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, … Read more

Linear Programming using Limited-Precision Oracles

Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactly and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations … Read more

Iterative Refinement for Linear Programming

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification … Read more